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How to deal with the heterogeneity of
sample of disease group ?

y =0 (control); y =1 (diabetes)

x =(glucouse level, BMI, diabetes measure)

Distribution of the LDF: controls (y=0, n=500), cases (y=1,n=268)

Komori, O. (University of Fukui) Generalized t-statistic and AUC



Gene expression data of asthmatic markers
(Dottorini et al., 2011)

control case
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Problem setting

We focus on a linear discriminant function: F(X) = 87X,
where x € RP

We assume that the sample of controls (y = 0) are normally
distributed:

Xo ~ N(uo, Zo),
where we apply log transformation if necessary.
» We summarize the information of the sample into the
sample mean Xo, and sample variance So.
However, we recognize the distribution of the cases sample
(y = 1) is far from normality.

» We take it into consideration more flexibly.

We propose the generalized t statistic based on U function.
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Generalization of t-statistic

For two samples {Xpi : i =1,...,ng} and {xq; : j =1,...,n}, we
consider the following statistic based on F(X) = Tx.

Generalized t-statistic (Komori et al., 2015)

_—
L= 5> e )

where U is an arbitrary function: R — R; Xy, Sy are conditional
sample mean and sample variance giveny.

el

where Ey, uy, Xy are conditional mean and variance given y.

Lu(®) = E:|U{
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t-statistic, AUC, Fisher , K-L divergence
@ t statistic: if U(w) = w, then
B (X1 — Xo)
L) = s
©Q AUC: IfU(w) = d)(w)(Su and Liu, 1993), then

na L 1
Lo(B) = Z of T2} - Auc)

@ Fisher: If U(w) = —(W — &)?, then

arglggang (B) o« (oS0 + 71S1) (X1 — Xo)-
Be

@ K-L divergence: If U(w) = Ugp(W), then

Ly, (8) = f f,w)log

f1(w)
¢(W’ :uW’ )
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Three assumptions
@ normality assumption of data for y = 0: Xg ~ N(uo, Zo).
@ consistency

(A) Ei(glw=a)=0 forallaeR,

@ asymptotic variance
(B) van(glw=a)=Qy forallacR,

where W = 81 (X - 10), 9 = Qo(X — o), Qo = Ip — By The target parameter is defined as.

B Zo (1 — o)
{(u1 = o) =g (1 — po))V/2

Bo ~ Br,

where Br = (Zo + Z1) "1 (u1 — p0)/{(u1 — p0)" (Zo + 1)L (1a — po)}/? and we can assume Zg = I and

o = 0in general.
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Consistency

We consider the estimator that maximizes the generalized
t-statistic:

Bu = argmaxLy (B).
BERP

Theorem 1 J

Under Assumption (A) Eu is consistent to Sy for any U.

Proof.
Using w = B (X - to) and g = Qo(X — 110), we have

%L(ﬁ) - EJ[U' .

which is 0 if 8 = Bg on account of the assumption (A). Hence from the strong law of large numbers,

EU is asymptotically consistent with Sg.
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What is assumption (A)?

Proposition 1
If it holds that
P1(X) = Pa((I — Qo)(X — o) + ko),

then (A) is satisfied where p;(X) is the probability density function
of xgiveny = 1.

This means that p;(X) is symmetrical with respect to

o + @B (@ € R). That is, it covers a wide range of distributions
such as the elliptical distributions including the multivariate
t-distribution with mean y; and the precision matrix I .
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Gaussian mixture model

(o)

pu(X) = Z k(X Vis Vi)
k=1
Proposition 2

Assumptions (A) and (B) under the infinite mixture model are rewritten as

(A") Z &(Qo— Q) =0, Z ekQk(vk — o) = 0 for anyf e N

keK, keK,

(B8 Z a6 QViQo — Qof = 0 for any¢ e N

keK,

where Qx = Ip — ViBoBY /(B ViBo) and K, = {k | BIvk = BLve. BEViBo = B VeBo).
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lllustration of typical examples

Figure 1: Contour plots of probability densities of y = 0 in gray and y = 1in
black, which satisfy Assumptions (A) and (B). For all three panels, o = (0,0)T,
Ty = o = diag(L 1) for all k. v, = (0,0)T, v> = (2,2), &e =0-2and e, = 0- 8 in
the left panel; vi = (-1, -1)", v» = (2,2)", &, = 0- 2 and & = 0- 8 in the middle
panel; v1 = (1,1)T, v = (1-5,0-5)T, v3 = (0-5,1-5)7, v4 = (-0 5,2 - 5),
=22, es=e3=e=0-1, & =0-4and e = 0- 3in the right panel
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Semiparametric model

Theorem 2
Under the assumption Xg ~ N(uo, o), if it holds that

P1(X) = w(c+B"X)Po(X),
then

© 3 is proportional to the target parameter 3,

© assumptions (A) and (B) hold.

v

If we consider ¥(2) = exp(), it corresponds to logistic linear model.
Y is an arbitrary non-parametric function.
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Asymptotic variance
Let f;(w) be a probability density function of w = 8] (X — o) given
y=1
Theorem 3

Under assumptions (A) and (B), n’*(8y — o) is asymptotically
distributed as N(0, %), where

Xy = Q.
E{U’(W)?) + 71 /o[ Ex{U’ (W)W} ]? + 71 /7o Eo{U’ (W)) ]
[Ex{UrW)S)) + Ex(Urww)]”

Cy =

b

where Qj is the generalized inverse of Qp, S(W) = dlog fi(w)/ow
and U’ is the first derivative of U.
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Optimal U function

Theorem 4

The optimal U that minimizes the asymptotic variance ofﬁu is
given as
f1(w)

¢(W7 HMw, 0'\%,) ’

where u,, = E(W), 02, = var(w). Moreover, we have

Uopt(W) = |Og

2
w

His2 —1+ (ﬂoﬂiw + O'iw — 1)(mo + maptrs2)”

0,

mincy =
UCu

where u1 = Es(W), 0%, = Ea{(W— 10)%), a2 = E1{S(W)?).
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Optimality in terms of AUC

The expected generalized t-statistic asymptotically satisfies
N N 1 " N
E{Lu(B)} - ElLu(B2)} = 2_nltr[HU (Bo)ivara(B1) — vam(B2)}] = 0
optimality of ﬁuom

E{Lu(Bu.,)} = E{Lu(B)}.

For example, if we take ®(w) as U(w), then we have

Ho(Bo) = —2f¢(w)wf1(w)de3.

Here we have [wh(w)dw = Ey(W) = (uju1)? > 0. This implies that
f o(w)w fr(w)dw > 0 because of the symmetry of ¢(w) with respect to the original

point. Hence, the estima‘torﬁuth asymptotically has a maximum value of AUC.
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Algorithm for estimation of g

@ Initialize as Y = S;1(X; — Xo).
Q Fort=2-.- T,
» Estimate f1(w) based on kernel method to produce

ljopt(W)-
» Update g9 to gV as

{ﬂ (Xaj - Xo)}

gO = argmax—ZUopt GTSop)?

BERP

@ output gy =M.

Note that the initial value B in step 1 above could be replaced by any other

value, so avoiding the need to calculate the inverse of Sp.
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Simulation
Setting

Xo ~ N(O, | p), X1 ~ (1 — € — Ez)N(Vo, Vo) P €1N(V1,V1) AF 62N(V2,V2),

where € = € = 0.1, v = (-1,-0.1,...,-0.1)T € RP, »; = (1,0.1...,0.1)"
v, =(3,03...,03)" €RP, Vo=V =V, = | ,and o = 11, p = 10and n = 200

s | & o
g E|
N IR B 2555
A =] I
== D ;] I
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U-lasso
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Solution paths by Ugp-lasso for variables in X group

p
LY (B) = Lu®) = 2 1B
k=1
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R package of U-lasso

I7-IL(E) #EE(E) Tn(V) BE(S) Tyo~N—2(B) W—ILI) ~LF(H)

< R: Lasso for the genera... x

Lasso for the generalized t-statistic
Description

Waximization of the generalized t—statistic with L1 penalty based on a generator function L
Usage

ulasso(x,y,step=b0,max. iter=00, type="opt", is.plat=TRUE,anchor=NULL)

Arguments

¥ matrix of predictors

y birary response [TRUE or FALSE] to be predicted

step number of multiplicative grids for the rangs of values of L1 penalty

max. iter maximum iteration number T for the update of the coefficient beta

type type of U ﬂmot\oﬁ used in the a\gor\thm “opt” for’ the optirmal-U function, “quad” for the quadratic—U
function, “auc” for auc—lJ function and “linear” for linear-U function

iz.plot If TRUE, the resultant path solution is drawn
anchar  mame of anchor variable fixed in the algorithm. If NULL the variable with the highest value of ALG is selected
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Generalization of Area under the ROC curve
(AUC)

Fro two samples {Xg : i =1,...,ng} and {X3; : j =1,...,m}, we
consider a linear predictor F(X) = 87x and propose

Generalized AUC
Lu(B) = i LR U{,BT(le _XOi)}
U - (BTSB)12 ’

Ny = =1

where U is a generator function: R — R; X, is a conditional sample
mean of X giveny; S = Sp + S;.

Bu = argmaxLy (8)
BeRP
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Two assumptions

@ consistency

(A) Ey(gylwy=a) =0 forallaeR, fory=0,1

@ asymptotic variance

(B)  var/(gy |wy =a) =X

y forallaeR, fory=0,1

where wy = Iy, gy = Qx,, Q= | - BeBL, £ = QZ,Q". And we define a target parameter of 8 as

27 (w1 — o)

pr= {(u — p0) "= (u1 — po)}/?’

where we assume X = Xg + X1 = |p and yg + 1 = 0 without loss of generality

The target parameter is the coefficient of Fisher linear predictor.
No normality assumption of Xo.
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Gaussian mixture
We consider Gaussian mixture such that

(o)

B = > (X vy Wy fory = 0,1
k=1
Proposition 3

Then assumption (A) and (B) are rewritten

(A") Z &«(Q—-Qu) =0, Z exQuyk =0, for "0 e N, y=0,1

ke Ky( ke Ky[

(B) > e QuvnQ - Qz,Q) =0, for e e N,y=0,1

ke Kyg

where Qyk = Ip = VyBeBE T /(BF "VyiBE), Kye = (K | BET vyk = BF " vye, BT VykBF = BT VyeBF).
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Semiparametric model

Theorem 5
Let y be a function: R — R, such that

py(X) = ¥y(c+BTX)p(x, 0,%,), fory=0,1,

and
B =240, fory=0,1

where Ay(# 0). Then
@ 3 is proportional to B¢
© assumption (A) and (B) are satisfied,

where ¢(X, i, X) is a normal distribution of mean u and variance X.
Yy is an arbitrary non-parametric function.
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Asymptotic variance

Let f(w) be a density function of w = w; — Wo = BL(X1 — Xo).

Theorem 6

Under assumptions (A) and (B) with X5 /mo = =} /m1, nY/2 (Bu - Be)
is asymptotically distributed as N(O, ZU)

Ty =aqQ,
Eo Ev(U' W] + Ex[EolU’(w))]| + 20E(U' WIE(U’ Ww) ~ [E(U’ wywi]”

Cu = 2
[E(U"(W)SW) + U’ (w)w}]

where Q" is the generalized inverse of Q; Xy = Qz,QT;
S(w) = dlog f(w)/ow; U’ is the first derivative of U and p = E(w).
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Optimal U function

By variational method, the optimal-U minimizing the asymptotic
variance should satisfy

Eo[U’(W)] + Ea[U’(W)] = AS(W) + aw+ b,

where w = w; — Wp; S(w) = dlog f1(w)/ow; A,a, b are some
constants.

Remark 1
Note that there does not exist U(w) if S(w) is a non-linear function. J

= [No optimal-U for generalized AUC in general]

@ f is easy to estimate efficiently (generalized t-statistic)

@ [k is difficult to estimate efficiently (generalized AUC)
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upper- U

The scalar term ¢y in asymptotic variance is upper-bounded by

E(U’(w)2) + 20E{U" WIE(U’ (w)w} — [EU’ (w)w)]

Cy S
[E(U(w)S(w) + U’(W)w}]

where the equality holds when U(w) = aw + b.

Proposition 4
The upper-bound is minimized by

UyppedW) = log f(w) + W2 -~ mw

Based on U,ppe(W) We construct optimal-U by polynomial
approximation

Uopt(W) = UuppedW) + &aW + 8oW° + - - - + amw'™,
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Optimal order of polynomial approximation

— () [—(K r 1P ==K PN ’ =K , — , 2
ES[EXUS W) + EX[EPUR W] + 20E 10 i EX U - [EUK (|

CU,(,'? =

[E(k)

(U’ WSt + U o ||

=K ’ ’
where E U’ (W) = 1/(nn{) 3y, 3 ic5 U7 (waj — woi),

=K ’ ’ =K ’ ’
Eo U'(W) = 1/n ey, U’ (Waj — Wai), Ep U'(W) = 1/n{9 3,05, U’ (waj — Woi). And

ngk)andrﬁk) are numbers of elements of |y and Ji, respectively, where

K

knle = @k#K), [ Jhk=(L....n}
k=1
K

N = @(k;ﬁk’),Usz{l,...,nl}.
k=1
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Cross validation

4.5 T T T T T

cross validated cU

Plot of ¢y against m
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Summary

© We propose generalized t-statistic and derive an optimal-U
minimizing asymptotic variance. The lasso-type method is
also considered to allow for high dimensional data analysis.

© In order to allow for heterogeneity for both populations, we
consider generalized AUC and its approximated optimal U.

© We have confirmed that our proposed methods work well in
simulation studies as well as real data analysis (not shown in
details).
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Discussion 1
Fisher linear discriminant analysis

F(X) = BIX +c,

where EF = (Sp + S1) (X1 — Xo) and c is a constant.

© 1tis proposed by Ronald A. Fisher (Fisher, 1936).

© 1tis derived by maximizing the ratio of the variance between
the two classes to the variance within the classes.

@ 1tis still valid and useful in real data analysis (Dudoit et al.,
2002; Hess et al., 2006)

@ Regularized LDA (Guo et al., 2007; Witten and Tibshirani,
2011), LDA in the reproducing kernel Hilbert space (Mika
et al., 1999) and LDA with Lasso (Trendafilov and Jolliffe,
2007)
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Discussion 2: Breast cancer data analysis
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Figure 2: Mean area above the ROC curves plotted against the number of top
genes included in the classifiers (Hess et al., 2006)
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Discussion 3: Consistency of ,/B\U to Bk

The important assumption is the one about consistency
(A) E/(gylwy=a)=0 forallaeR, fory=0,1
For practical purpose, we can omit assumption (B)

(B) var(gy |wy = a) = X

y forallaeR, fory=0,1

In that case we need the optimization regarding the asymptotic
variance (matrix)
Uopt = argmin|Xy|,
U

where U can be modeled using natural cubic spline or sigmoid
function with some scale parameter.
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Discussion 4: open problems

© How far can Fisher linear discriminant analysis be extended
by F(X) = B8, x? Especially in high dimensional data analysis?

© What are conditions of probability density function po(x) and
p1(X) such that By has consistency to Bg?

© How do we derive the optimal-U to estimate Bg?
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